

Nomenclature Types

Common (trivial)

- Typically used
- Straight memorization
- May not indicate what elements are present
- Many slight differences

IUPAC

- Easy
- Follows specific rules
- Identifies the specific elements which are present
- Clear-cut definitions

Binary Covalent Compounds

- First element is the most electro positive
- The last element looses it's ending
- The last element has -ide added to it's ending
- Quantities of the elements uses Greek prefixes

(1) mono (6) hexa (2) di (7) hepta (3) tri (8) octa (4) tetra (9) nona (5) penta (10) deca

Ionic Compounds

- Metal Cations with variable charges have the charge listed after the metal.
 - Not group I, II and III
- Older, nonsystematic convention for cations
 - -ous for lower charge
 - -ic for higher charge

Polyatomic oxoanions

- Ions with the –ite ending have one fewer oxygen atom than the ions with the –ate ending
- The hypo-ite anions have one fewer oxygen atom than the corresponding -ite anion
- The per-ate anions have one more oxygen atom than the corresponding -ate anion
 - The prefix per- is a truncation of (hy)per, (hyper means "higher")

Polyato	mics				
OH- hydroxide O ₂	Per peroxide CN cyanide azide I ₃ triiodide	Group V	V (15)	Group	VI (16)
BO ₃ borate	CO ₃ ²⁻ carbonate HCO ₃ ²⁻ hydrogen carbonate (or bicarbonate) CH ₃ CO ₂ ⁻ acetate OCN ⁻ cyanate SCN ⁻ thiocyanate	NO ₂ ⁻ NO ₃ ⁻ PO ₄ ³⁻ HPO ₄ ²⁻	nitrite nitrate phosphate hydrogen phosphate dihydrogen	SO ₃ ²⁻ SO ₄ ²⁻ HSO ₄ ⁻	sulfite sulfate hydrogen sulfate (or bisulfate) thiosulfate
Group VII (17) CIO hypochlorite CIO ₂ chlorite CIO ₃ chlorate CIO ₄ perchlorate	Transition metal oxoanions (6, 7) $CrO_4^{2-} chromate$ $Cr_2O_7^{2-} dichromate$ $MnO_4^- permanganate$	- 5	phosphate arsenite arsenate		

Hydrated Ionic Compounds

• Add the Greek prefix and then hydrate

Acids

- The -ide anions form acids with the naming structure hydro-ic acid
- The -ate anions (including the per-ates) form acids with the naming structure hydro-ic acid
- The -ite anions (including the hypo-ites) form acids with the naming structure hydro-ous acid

See Your Lab Manual For Examples

- Water
- Ammonia
- Ammonium