4. How much work is required to lift a 4.0 kg concrete block to a height of 2.0 m?

$$W = F \times D$$

$$F = m \times a \text{ where } a = 9.80 \frac{m}{s^2}$$

$$W = m \times 9.80 \frac{m}{s^2} \times D$$

$$W = 4.0kg \times 9.80 \frac{m}{s^2} \times 2.0m$$

$$W = 78 \frac{kgm}{s^2}$$

$$W = 78N$$

12. Which has more kinetic energy: a 0.0020-kg bullet traveling at 400 m/s or a 6.4×10^7 -kg ocean liner traveling at 10 m/s (20 knots)? Justify your asswer.

Bullet
$$KE = \frac{1}{2} mv^{2}$$

$$KE = \frac{1}{2} 0.0020 \ kg \times (400 \ m/s)^{2}$$

$$KE = 0.0010 \ kg \times 160,000 \frac{m^{2}}{s^{2}}$$

$$KE = 160 \frac{kg \cdot m^{2}}{s^{2}}$$

$$KE = 1.6 \ X \ 10^{2} \frac{kg \cdot m^{2}}{s^{2}}$$

$$Ocean liner$$

$$KE = \frac{1}{2} \times 6.1 \ x \ 10^{7} \ kg \times (10 \ m/s)^{2}$$

$$KE = 3.0 \ x \ 10^{9} \ \frac{kg \cdot m^{2}}{s^{2}}$$

$$KE = 3.0 \ x \ 10^{9} \ \frac{kg \cdot m^{2}}{s^{2}}$$

The Ocean Liner has more kinetic energy

15. What is the potential energy of a 3.00 kg object at the bottom of a well 10.0 m deep as measured from ground level? Explain the sign of the answer.

$$PE = mgh \text{ where } g = 9.80 \frac{m}{s^2}$$

$$PE = 3.00 \ kg \times 9.80 \frac{m}{s^2} \times -10.0 \ m$$

$$PE = -294 \frac{kg \ m^2}{s^2}$$

$$PE = -294J$$

The sign is negative because the object is below ground level

16. How much work is required to lift a 3.00 kg object from the bottom of a 10.0 m deep well?

Since the potential energy will be zero at ground level and using the answer from question 13, the energy required to lift the object will be 294V.

- 20. A 35.0 kg child starting from rest slides down a water slide with a vertical height of 20.0 m. What is the child's speed at
 - a. Halfway down the slide's vertical distance?

Knowing that the potential energy will all be converted to kinetic energy, we can use the following formal:

$$KE = PE$$

$$\frac{1}{2}mv^2 = mgh$$

$$v = \sqrt{2gh}$$

At a vertical distance of 10.0 m the child's velocity will be

$$v = \sqrt{2gh}$$

$$v = \sqrt{2 \times 9.80 \frac{m}{s^2} \times 10.0 m}$$

$$v = \sqrt{196 \frac{m^2}{s^2}}$$

$$v = 14.0 \frac{m}{s}$$

b. Three quarters of the way down?

At a vertical distance of 15.0 m the child's velocity will be:

$$v = \sqrt{2gh}$$

$$v = \sqrt{2 \times 9.80 \frac{m}{s^2} \times 15.0 m}$$

$$v = \sqrt{294 \; \frac{m^2}{s^2}}$$

$$v = 17.1 \frac{m}{s}$$

24. A 130 lb student races up stairs with a vertical height of 8.0 m in 5.0 s to get to a class on the second floor. How much power in watts does the student expend in doing work against gravity?

First we need to convert 130 lbs to kg:

$$130 \ lbs \times \frac{1 \ kg}{2.20 \ lb} = 59 \ kg$$

Next we need the formula:

$$P = \frac{W}{t}$$

$$W = F \times D$$

 $F = m \times a$ where $a = 980 \frac{m}{2}$

Combining all of the above...

$$P = \frac{m \times a \times D}{t}$$

$$59 kg \times 9.80 \frac{m}{s^2} \times 8.0 m$$
$$5.0 s$$

$$P = 930 \ \frac{kgm^2}{s^3}$$

$$P = 930 Watts$$